

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example

Simulatio

Benefits

Cautions

Conclusions

Bayesian Mixture Modeling

Sarah Depaoli University of California, Merced

July 21, 2014 M*plus* Users Meeting, Utrecht

イロン イヨン イヨン イヨン

э

Organization of the Talk

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Organization Mixtures
- Example
- ~ . . .
- Simulations
- Benefits
- Cautions
- Conclusions

- Mixture modeling
- Bayesian estimation framework
- Motivating examples
 - Introduce the basic LCA model
 - Illustrated using Adult California Tobacco Survey
 - Priors for LCA
 - Bayesian portions of Mplus code
 - Illustrated using Youth Risk Behavior Survey
- Simulation findings: Estimating mixture models in Mplus

イロト イポト イヨト イヨト

- Benefits of Bayes for mixture models
- Cautions using Bayes with mixture models
- Concluding remarks

Introduction to Mixture Modeling

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro Organization Mixtures Bayesian Example Simulations Benefits

Cautions

Conclusions

• A large part of so-called second-generation SEM is the ability to model different *unobserved* groups of individuals.

- These unobserved groups can be captured through mixture models, and substantive differences across the groups can be identified.
- Mixture modeling has proved to be a useful tool for accounting for heterogeneity within a population, and the flexibility of mixture models has allowed for some innovative modeling techniques.¹

¹For detailed information about mixture modeling, see: McLachlan, G., & Peel, D. (2004). *Finite mixture models*. John Wiley & Sons.

Introduction to Mixture Modeling cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro Organization Mixtures Bayesian
- Example
- Simulations
- Benefits
- Cautions
- Conclusions

- Mixtures are particularly useful when there is unobserved heterogeneity in the data.
- In this case, the variables that cause heterogeneity in the data are not known prior to data analysis.
- The researcher hypothesizes that the population is comprised of an unknown (precise) number of substantively distinct subpopulations (or classes).
 - e.g., depression (subpopulations: non, mild, depressed); reading achievement (subpopulations: low, average, high)
- Typically, it is "known" that the population is heterogeneous, but there is no known indicator of class membership.
- Class membership must be determined based on observed data patterns.

イロト イポト イヨト イヨト

Bayesian Estimation Framework

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro Organization Mixtures Bayesian Example Simulations Benefits

Conclusions

- The Bayesian estimation framework is a complex system used to estimate models.²
- One of the key differences between frequentist (e.g., ML/EM) and Bayesian estimation is the use of *prior distributions*.

$$Posterior = Data * Prior$$
(1)

• The prior distribution is moderated by the data and this relationship produces the *posterior distribution* (estimate).

²For more details about Bayesian estimation, see: Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian dat analysis.* CRC press.

Bayesian Estimation cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro Organization Mixtures Bayesian
- Example
- Simulations
- Benefits
- Cautions
- Conclusions

- Prior distributions are placed on every model parameter that we wish to estimate.
 - Think of priors similar to a "bet".
- These distributions represent the amount of uncertainty that we have surrounding the parameters in our model.
- Specifically, priors represent our opinions about each model parameter.

Image: A matrix

A B K A B K

Bayesian Estimation cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro Organizatio Mixtures Bayesian
- Example
- Simulations
- Benefits
- Cautions
- Conclusions

- Priors allow us to incorporate our (un)certainty about model parameters using probability distributions.
 - For example, Intercept $\sim \mathcal{N}(\mu, \sigma^2)$.
 - The μ and σ^2 terms are called hyperparameters.
- In addition, we can also make an assumption about the particular values that the intercept can take on.
 - Diffuse: having no idea about the parameter value.
 - Informative: having a very strong idea about the parameter value.
 - Weak: Using less information then is available for the prior.

イロト イポト イヨト イヨト

• The specification of these prior distributions is an integral part of using the Bayesian estimation framework.

Contrived Example of the Bayesian Framework

Priors: Different Levels of Informativeness

Э

Posterior Chain and Corresponding Density

Motivating Example: LCA

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro

Example

- Smokers Priors M*plus*
- Simulations
- Benefits
- Cautions
- Conclusions

- Latent class analysis (LCA) is a method used to capture different response patterns for discrete observed variables.
- With these types of variables, there can be a very large number of response patterns (e.g., 5 binary items: $2^5 = 32$ response patterns).

イロト イポト イヨト イヨト

• LCA summarizes these response patterns into a few, substantively meaningful latent classes.

Latent Class Analysis cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro

Example

- Smokers Priors M*plus*
- Simulations
- Benefits
- Cautions
- Conclusions

- Each individual has a probability for belonging to each class, and the individual is assigned to the class corresponding with the highest probability of membership.
- The assigned class consists of individuals with similar response patterns.
- LCA provides a succinct description of the latent classes through the different patterns of responses on the observed variables.

イロト イポト イヨト イヨト

LCA: Example of Former Smokers³

Sarah Depaoli UC Merced

Intro

- Example Smokers Priors Molus
- Simulations

Benefits

Cautions

Conclusions

 Using ~2500 cases from the Adult California Tobacco Survey to identify possible latent groups of former smokers

³Clifton, J., Depaoli, S., and Song, A. (under revision). Are all former smokers alike? A latent class analysis.

LCA: Example of Former Smokers cont.

イロン イヨン イヨン イヨン

Э

Priors for a Basic LCA

- Sarah Depaoli UC Merced
- Intro
- Example Smokers Priors Mplus
- Simulations
- Benefits
- Cautions
- Conclusions

- Response probabilities: Normal prior, $N(0,10^{10})$
- Latent class proportions: Dirichlet prior, D(10,10)
- Residual variances: Inverse-Gamma prior, IG(-1,0)

General Mplus code for Bayesian Estimation

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example Smokers Priors Mplus

Simulation

Benefits

Cautions

Conclusions

```
ANALYSIS:
TYPE=MIXTURE;
ESTIMATOR = BAYES:
CHAINS=1;
DISTRIBUTION=50,000;
POINT=MODE;
ALGORITHM = GIBBS (PX1);^{4}
BCONVERGENCE = .05
BITERATIONS=50,000 0;
FBITERATIONS = 50,000;
THIN=1;
```


M*plus* code for Bayesian LCA (Collins & Lanza, Youth Risk Behavior 2007, Priors from 2005)

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example Smokers Priors Mplus Simulation Benefits Cautions

%overall% model priors: [c#1 * 2.595] (d1);d1~D(8917,720); [c#2 * 0.587] (d2); d2~D(1211,720); 8c#18 !c#1 [cig13\$1 * -3.132](j11); j11∼N(-3.132,0.084); [cig30\$1 * -3.892] (12);j12~N(-3.892,0.112); [drive\$1 * −5.141] (j13); j13~N(-5.141,0.317); %c#2% !c#2[cig13\$1 * 1.150] (j21); j21~N(1.150,0.174); [cig30\$1 * -0.770] (j22); j22~N(-0.770,0.121); [drive \$1 * -1.746] (123);j23~N(-1.746,0.158); !c#38c#38 [cig13\$1 * 0.611] (j31); j31∼N(0.611,0.134); [cig30\$1 * 0.674] (j32); j32~N(0.674,0.098); [drive\$1 * -0.163] (j33); j33∼N(-0.163,0.093); ト < 臣 > < 臣 >

LCA Simulation Results⁵

⁵Depaoli, S. and Clifton, J. (in preparation). The specification and impact of prior distributions for categorical latent variable models. $\langle z \rangle = \langle z \rangle \langle z \rangle$

LCA Simulation Results cont.

Benefits: General

- Bayesian Mixture Modeling
- Sarah Depaoli UC Merced
- Intro
- Example
- Simulations
- Benefits
- General
- Info. Priors Inaccuracte
- Cautions
- Conclusions

- In general, the Bayesian approach can produce a drastic improvement in accuracy in parameter estimates and mixture class proportions, especially when more informative (or weak) priors are specified.
 - This approach can also help identify small but substantively real latent classes.⁶

⁶see e.g., Depaoli (2013); and van de Schoot, Depaoli, van Loey, N., and Sijbrandij, M. (under review). Integrating background knowledge about traumatic stress experienced after trauma into latent growth mixture models.

Benefits: Accurate, Informative Priors

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulations
- Benefits General Info. Priors Inaccuracte
- Cautions
- Conclusions

- Informative priors perform quite well in simulation in that they are largely able to uncover small but substantively different mixture classes.⁷
- Latent class proportions are also well recovered with the use of (weakly) informative Dirichlet priors on the class proportions.⁸

⁷Depaoli, S. (2013). ⁸Depaoli, S. and Clifton, J. (in preparation):→ <♂→ <≥→ <≥→ <≥→ <<

Sarah DepaoliUC Merced

Bayesian Mixture Modeling

Benefits: Inaccurate Priors

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulations
- Benefits General Info. Priors Inaccuracte
- Cautions
- Conclusions

- Mixture modeling is relatively robust to inaccuracies in prior distributions.⁹
- This is an important finding given that if the location of a prior distribution is very wrong, then the parameter value can still be accurately recovered by even moderately increasing the variance hyperparameter of the prior.
- One area not examined yet is the inaccuracy of the Dirichlet prior and the impact this would have on substantive findings.

⁹Depaoli, S. (2014).

Sarah DepaoliUC Merced

Bayesian Mixture Modeling

イロト イポト イヨト イヨト

Cautions: Diffuse Priors

- Bayesian Mixture Modeling
- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions Diffuse
- Conclusions

- Findings have suggested that more informative priors are necessary in the context of mixture modeling.¹⁰
- Diffuse priors (e.g., N(0, 10¹⁰)) may have a more harmful impact on parameter estimates than inaccurate priors in the case of mixture modeling.

¹⁰Depaoli (2012); Depaoli (2013) Sarah DepaoliUC Merced Ba

Bayesian Mixture Modeling

Concluding Remarks about Bayesian Mixture Modeling in M*plus*

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions

Conclusions Overall Contact IW

- The Bayesian estimation framework shows promise in accurately estimating mixture models under various modeling conditions.
- Recognizing that our priors will undoubtedly contain some level of inaccuracy according to the unknown population, it is important to conduct a sensitivity analysis in order to assess how much of an impact different levels of the prior have on model results.
- Openness and transparency are vital for implementing any statistical tool, but this is especially the case for Bayesian tools.

Thank You!

Sarah Depaoli UC Merced

Intro

Example

Simulation

Benefits

Cautions

Conclusions Overall Contact Questions or Comments:

Sarah Depaoli: sdepaoli@ucmerced.edu

イロン イヨン イヨン イヨン

Э

Specification of Latent Class Analysis

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits

Cautions

Conclusions Overall Contact IW • The probability of membership in latent class c is represented by γ_c and

$$\sum_{c=1}^{C} \gamma_c = 1. \tag{2}$$

• For a given observed item j, the probability of response r_j given membership in class c is given by an item-response probability $\rho_{j,r_j|c}$. Note that the vector of item-response probabilities for item j conditional on latent class c always sums to 1.0 across all possible responses to item j as denoted by

$$\sum_{r_j=1}^{R_j} \rho_{j,r_j|c} = 1$$
 (3)

for all *j* observed items.

Specification of Latent Class Analysis

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example

Simulation

Benefits

Cautions

Conclusions Overall Contact IW • In order to define the LCA model, the probability of a given pattern of responses must be computed. Let y_j represent the *j* element for the observed response pattern denoted as vector **y**. Next, let $I(y_j = r_j)$ represents in indicator variable such that the indicator variable equals 1 when variable $j = r_j$ and 0 otherwise. Then, the probability of observing a particular set of item responses **y** can be written as

$$P(\mathbf{Y} = \mathbf{y}) = \sum_{c=1}^{C} \gamma_c \Pi_{j=1}^{J} \Pi_{r_j=1}^{R_j} \rho_{j,r_j|c}^{I(y_j=r_j)}.$$
 (4)

イロト イポト イヨト イヨト

Specification of Latent Class Analysis

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example

Simulation

Benefits

Cautions

Conclusions Overall Contact IW Essentially, Equation 4 indicates that the probability of observing a particular response pattern y is a function of the probability of membership in each of the C latent classes given by the γ_c term and the probability of each response conditional on latent class membership denoted by ρ_{j,r_j|c}. To provide an example of more concrete notation, Equation 4 can be expanded out for observed categorical items j₁,..., j₄ respectively:

$$P_{j=1,\dots,4} = \sum_{c=1}^{C} \gamma_c \rho_{j=1|c} \rho_{j=2|c} \rho_{j=3|c} \rho_{j=4|c}, \qquad (5)$$

 where the probability of a given response pattern for items j = 1,..., 4 is a product of the proportion of individuals in latent class c and response probabilities for observed items j = 1,..., 4 conditioned on class membership.

Bayesian Estimation

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example

Simulation

Benefits

Cautions

Conclusions Overall Contact • We first set up the joint probability distribution which is

$$P(\mathbf{y}, \mathbf{\Theta}) = P(\mathbf{y}|\mathbf{\Theta})P(\mathbf{\Theta}).$$
 (6)

 Bayes theorem uses this product to compute the probability of Θ given the observed data y through the following

$$P(\boldsymbol{\Theta}|\mathbf{y}) = \frac{P(\mathbf{y}|\boldsymbol{\Theta})P(\boldsymbol{\Theta})}{\int_{\boldsymbol{\Theta}} P(\mathbf{y}|\boldsymbol{\Theta})P(\boldsymbol{\Theta})d\boldsymbol{\Theta}}$$
(7)

・ロト ・日本 ・モート ・モート

where P(y|Θ) represents the likelihood (the observed data given the distributional parameters), P(Θ) represents something called a prior distribution that is coupled with the likelihood, and P(Θ|y) is the posterior distribution of Θ.

Inverse-Wishart Specification in Mplus

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulations
- Benefits
- Cautions

Conclusions Overall Contact IW

- There are three specifications of the inverse Wishart that are discussed as non-informative in Asparouhov and Muthén (2010)¹²
- The first specification is IW(0,-p-1), which is the current default setting in Mplus version 7.2 for covariance matrices and mimics a uniform prior bounded at (−∞,∞).
- The second specification is IW(0,0).
- The last specification discussed is IW(I,p+1), where this prior mimics the case where off-diagonal elements (covariances) of the covariance matrix would have uniform priors bounded at [-1,1] and diagonal elements (variances or residual variances) distributed as IG(1,.5).

Sarah DepaoliUC Merced Bayesia

Cautions: Inverse Wishart Priors

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions
- Conclusions Overall Contact IW

- Although not discussed here, it is important to address some points about the inverse Wishart prior, which is commonly implemented with mixture models (for covariances).
- Changing default M*plus* settings of this prior may create a multivariate prior that is non-positive definite.
 - When the default is changed, you have univariate inverse gamma priors on diagonals and univariate uniform or normal priors on off-diagonals.¹³
- When in doubt, seek advice from a statistician!

¹³For more details see: Depaoli and van de Schoot∋(under review). ≣ ∽າດເ

References

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions
- Conclusions Overall Contact IW

- Asparouhov, T, and Muthén, B. (2010). Bayesian analysis using Mplus: Technical implementation. Technical Report. Los Angeles: Muthén & Muthén.
- Clifton, J., Depaoli, S., and Song, A. (under revision). Are all former smokers alike? A latent class analysis.
- Depaoli, S. (2014). The impact of inaccurate "informative" priors for growth parameters in Bayesian growth mixture modeling. *Structural Equation Modeling: A Multidisciplinary Journal, 21,* 239-252.
- Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. *Psychological Methods*, *18*, 186–219.

イロト イヨト イヨト イヨト

References cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions
- Conclusions Overall Contact IW

- Depaoli, S. (2012). Measurement and structural model class separation in mixture-CFA: ML/EM versus MCMC. *Structural Equation Modeling: A Multidisciplinary Journal*, 19, 178-203.
- Depaoli, S. and Clifton, J. (in preparation). The specification and impact of prior distributions for categorical latent variable models.
- Depaoli, S. and van de Schoot, R. (under review). The WAMBS-checklist: When to worry, and how to avoid the misuse of Bayesian statistics.
- Diebolt, J., and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. *Journal* of the Royal Statistical Society. Series B (Methodological), 363-375.

References cont.

Bayesian Mixture Modeling

- Sarah Depaoli UC Merced
- Intro
- Example
- Simulation
- Benefits
- Cautions
- Conclusions Overall Contact IW

- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). *Bayesian data analysis.* CRC press.
- McLachlan, G., and Peel, D. (2004). *Finite mixture models*. John Wiley & Sons.
- Natarajan, R., and McCulloch, C. E. (1998). Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference?. *Journal of Computational and Graphical Statistics*, 7(3), 267-277.
- Richardson, S., and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society: series B (statistical methodology), 59(4), 731-792.

References cont.

Bayesian Mixture Modeling

Sarah Depaoli UC Merced

Intro

Example

Simulation

Benefits

Cautions

Conclusions Overall Contact IW

- Roeder, K., and Wasserman, L. (1997). Practical Bayesian density estimation using mixtures of normals. *Journal of the American Statistical Association, 92*(439), 894-902.
- van de Schoot, Depaoli, van Loey, N., and Sijbrandij, M. (under review). Integrating background knowledge about traumatic stress experienced after trauma into latent growth mixture models.

イロト イポト イヨト イヨト