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Introduction to Mixture Modeling

A large part of so-called second-generation SEM is the
ability to model different unobserved groups of individuals.

These unobserved groups can be captured through mixture
models, and substantive differences across the groups can
be identified.

Mixture modeling has proved to be a useful tool for
accounting for heterogeneity within a population, and the
flexibility of mixture models has allowed for some
innovative modeling techniques.1

1For detailed information about mixture modeling, see: McLachlan, G., &
Peel, D. (2004). Finite mixture models. John Wiley & Sons.
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Introduction to Mixture Modeling cont.

Mixtures are particularly useful when there is unobserved
heterogeneity in the data.

In this case, the variables that cause heterogeneity in the
data are not known prior to data analysis.

The researcher hypothesizes that the population is
comprised of an unknown (precise) number of
substantively distinct subpopulations (or classes).

e.g., depression (subpopulations: non, mild, depressed);
reading achievement (subpopulations: low, average, high)

Typically, it is “known” that the population is
heterogeneous, but there is no known indicator of class
membership.

Class membership must be determined based on observed
data patterns.
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Bayesian Estimation Framework

The Bayesian estimation framework is a complex system
used to estimate models.2

One of the key differences between frequentist (e.g.,
ML/EM) and Bayesian estimation is the use of prior
distributions.

Posterior = Data * Prior (1)

The prior distribution is moderated by the data and this
relationship produces the posterior distribution (estimate).

2For more details about Bayesian estimation, see: Gelman, A., Carlin, J. B.,
Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data
analysis. CRC press.
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Bayesian Estimation cont.

Prior distributions are placed on every model parameter
that we wish to estimate.

Think of priors similar to a “bet”.

These distributions represent the amount of uncertainty
that we have surrounding the parameters in our model.

Specifically, priors represent our opinions about each
model parameter.

Sarah DepaoliUC Merced Bayesian Mixture Modeling



Bayesian
Mixture
Modeling

Sarah Depaoli
UC Merced

Intro

Organization

Mixtures

Bayesian

Example

Simulations

Benefits

Cautions

Conclusions

Bayesian Estimation cont.

Priors allow us to incorporate our (un)certainty about
model parameters using probability distributions.

For example, Intercept ∼ 𝒩 (𝜇, 𝜎2).

The 𝜇 and 𝜎2 terms are called hyperparameters.

In addition, we can also make an assumption about the
particular values that the intercept can take on.

Diffuse: having no idea about the parameter value.
Informative: having a very strong idea about the
parameter value.
Weak: Using less information then is available for the prior.

The specification of these prior distributions is an integral
part of using the Bayesian estimation framework.
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Contrived Example of the Bayesian Framework
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Priors: Different Levels of Informativeness
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Posterior Chain and Corresponding Density
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Motivating Example: LCA

Latent class analysis (LCA) is a method used to capture
different response patterns for discrete observed variables.

With these types of variables, there can be a very large
number of response patterns (e.g., 5 binary items: 25 = 32
response patterns).

LCA summarizes these response patterns into a few,
substantively meaningful latent classes.
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Latent Class Analysis cont.

Each individual has a probability for belonging to each
class, and the individual is assigned to the class
corresponding with the highest probability of membership.

The assigned class consists of individuals with similar
response patterns.

LCA provides a succinct description of the latent classes
through the different patterns of responses on the
observed variables.
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LCA: Example of Former Smokers3

c

YRSREG QUITTIME SMOK6MOS THINKSMK STARTAGN OTHERTOB CANCER ADDICTIV EXPOSURE CANQUIT MARRIED

Using ∼2500 cases from the Adult California Tobacco
Survey to identify possible latent groups of former smokers

3Clifton, J., Depaoli, S., and Song, A. (under revision). Are all former
smokers alike? A latent class analysis.
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LCA: Example of Former Smokers cont.
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Priors for a Basic LCA

C

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

e1 e2 e3 e4 e5 e6

Response probabilities: Normal prior, N(0,1010)

Latent class proportions: Dirichlet prior, D(10,10)

Residual variances: Inverse-Gamma prior, IG(-1,0)
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General Mplus code for Bayesian Estimation

ANALYSIS:
TYPE=MIXTURE;
ESTIMATOR = BAYES;
CHAINS=1;
DISTRIBUTION=50,000;
POINT=MODE;
ALGORITHM = GIBBS (PX1);4

BCONVERGENCE=.05
BITERATIONS=50,000 0;
FBITERATIONS = 50,000;
THIN=1;

4More information about Bayesian samplers in: Asparouhov, T, and Muthén,
B. (2010). Bayesian analysis using Mplus: Technical implementation. Technical
Report. Los Angeles: Muthén & Muthén.
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Mplus code for Bayesian LCA (Collins & Lanza,
Youth Risk Behavior 2007, Priors from 2005)

model priors:
d1∼D(8917,720);
d2∼D(1211,720);

!c#1
j11∼N(-3.132,0.084);
j12∼N(-3.892,0.112);
j13∼N(-5.141,0.317);

!c#2
j21∼N(1.150,0.174);
j22∼N(-0.770,0.121);
j23∼N(-1.746,0.158);

!c#3
j31∼N(0.611,0.134);
j32∼N(0.674,0.098);
j33∼N(-0.163,0.093);

%overall%
[c#1 * 2.595](d1);
[c#2 * 0.587](d2);

%c#1%
[cig13$1 * −3.132](j11);
[cig30$1 * −3.892](j12);
[drive$1 * −5.141](j13);

%c#2%
[cig13$1 * 1.150](j21);
[cig30$1 * −0.770](j22);
[drive$1 * −1.746](j23);

%c#3%
[cig13$1 * 0.611](j31);
[cig30$1 * 0.674](j32);
[drive$1 * −0.163](j33);
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LCA Simulation Results5
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5Depaoli, S. and Clifton, J. (in preparation). The specification and impact of
prior distributions for categorical latent variable models.
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LCA Simulation Results cont.
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Benefits: General

In general, the Bayesian approach can produce a drastic
improvement in accuracy in parameter estimates and
mixture class proportions, especially when more
informative (or weak) priors are specified.

This approach can also help identify small but
substantively real latent classes.6

6see e.g., Depaoli (2013); and van de Schoot, Depaoli, van Loey, N., and
Sijbrandij, M. (under review). Integrating background knowledge about
traumatic stress experienced after trauma into latent growth mixture models.
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Benefits: Accurate, Informative Priors

Informative priors perform quite well in simulation in that
they are largely able to uncover small but substantively
different mixture classes.7

Latent class proportions are also well recovered with the
use of (weakly) informative Dirichlet priors on the class
proportions.8

7Depaoli, S. (2013).
8Depaoli, S. and Clifton, J. (in preparation).
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Benefits: Inaccurate Priors

Mixture modeling is relatively robust to inaccuracies in
prior distributions.9

This is an important finding given that if the location of a
prior distribution is very wrong, then the parameter value
can still be accurately recovered by even moderately
increasing the variance hyperparameter of the prior.

One area not examined yet is the inaccuracy of the
Dirichlet prior and the impact this would have on
substantive findings.

9Depaoli, S. (2014).
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Cautions: Diffuse Priors

Findings have suggested that more informative priors are
necessary in the context of mixture modeling.10

Diffuse priors (e.g., N(0, 1010)) may have a more harmful
impact on parameter estimates than inaccurate priors in
the case of mixture modeling.

10Depaoli (2012); Depaoli (2013)
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Concluding Remarks about Bayesian Mixture
Modeling in Mplus

The Bayesian estimation framework shows promise in
accurately estimating mixture models under various
modeling conditions.

Recognizing that our priors will undoubtedly contain some
level of inaccuracy according to the unknown population,
it is important to conduct a sensitivity analysis in order to
assess how much of an impact different levels of the prior
have on model results.

Openness and transparency are vital for implementing any
statistical tool, but this is especially the case for Bayesian
tools.
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Thank You!

Questions or Comments:

Sarah Depaoli: sdepaoli@ucmerced.edu
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Specification of Latent Class Analysis

The probability of membership in latent class c is
represented by 𝛾c and

C∑︁
c=1

𝛾c = 1. (2)

For a given observed item j , the probability of response rj
given membership in class c is given by an item-response
probability 𝜌j ,rj |c . Note that the vector of item-response
probabilities for item j conditional on latent class c always
sums to 1.0 across all possible responses to item j as
denoted by

Rj∑︁
rj=1

𝜌j ,rj |c = 1 (3)

for all j observed items.
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Specification of Latent Class Analysis

In order to define the LCA model, the probability of a
given pattern of responses must be computed. Let yj
represent the j element for the observed response pattern
denoted as vector y. Next, let I (yj = rj) represents in
indicator variable such that the indicator variable equals 1
when variable j = rj and 0 otherwise. Then, the
probability of observing a particular set of item responses
y can be written as

P(Y = y) =
C∑︁

c=1

𝛾cΠ
J
j=1Π

Rj

rj=1𝜌
I (yj=rj )

j ,rj |c . (4)
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Specification of Latent Class Analysis

Essentially, Equation 4 indicates that the probability of
observing a particular response pattern y is a function of
the probability of membership in each of the C latent
classes given by the 𝛾c term and the probability of each
response conditional on latent class membership denoted
by 𝜌j ,rj |c . To provide an example of more concrete
notation, Equation 4 can be expanded out for observed
categorical items j1, . . . , j4 respectively:

Pj=1,...,4 =
C∑︁

c=1

𝛾c𝜌j=1|c𝜌j=2|c𝜌j=3|c𝜌j=4|c , (5)

where the probability of a given response pattern for items
j = 1, . . . , 4 is a product of the proportion of individuals in
latent class c and response probabilities for observed items
j = 1, . . . , 4 conditioned on class membership.
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Bayesian Estimation

We first set up the joint probability distribution which is

P(y,Θ) = P(y|Θ)P(Θ). (6)

Bayes theorem uses this product to compute the
probability of Θ given the observed data y through the
following

P(Θ|y) = P(y|Θ)P(Θ)∫︀
Θ
P(y|Θ)P(Θ)dΘ

(7)

where P(y|Θ) represents the likelihood (the observed data
given the distributional parameters), P(Θ) represents
something called a prior distribution that is coupled with
the likelihood, and P(Θ|y) is the posterior distribution of
Θ.
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Inverse-Wishart Specification in Mplus

There are three specifications of the inverse Wishart that
are discussed as non-informative in Asparouhov and
Muthén (2010)12

The first specification is IW(0,-p-1), which is the current
default setting in Mplus version 7.2 for covariance
matrices and mimics a uniform prior bounded at (−∞,∞).

The second specification is IW(0,0).

The last specification discussed is IW(I,p+1), where this
prior mimics the case where off-diagonal elements
(covariances) of the covariance matrix would have uniform
priors bounded at [-1,1] and diagonal elements (variances
or residual variances) distributed as IG(1,.5).

12page 35: Bayesian analysis using Mplus: Technical implementation.
Technical Report. Version 3.
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Cautions: Inverse Wishart Priors

Although not discussed here, it is important to address
some points about the inverse Wishart prior, which is
commonly implemented with mixture models (for
covariances).

Changing default Mplus settings of this prior may create a
multivariate prior that is non-positive definite.

When the default is changed, you have univariate inverse
gamma priors on diagonals and univariate uniform or
normal priors on off-diagonals.13

When in doubt, seek advice from a statistician!

13For more details see: Depaoli and van de Schoot (under review).
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