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Introduction

I Inverse-Wishart prior distribution for covariance matrices.

I Specification of uninformative prior can be difficult when
variances may be small (see also Gelman 2006 on
Inverse-Gamma distributions).

I Especially an issue for multilevel (autoregressive time series)
models.



Introduction

I How do psychological variables affect each other over time?



Introduction

Cross-lagged Panel Models

I SEM

I few repeated measures,
many persons

I ignores differences between
persons

Time Series Models

I many repeated measures,
one person

I difficult to generalize



Introduction

Multilevel Autoregressive Models

I many repeated measures, many persons

I fit autoregressive model for all persons at once

I model parameters are allowed to vary over persons

I In the next version of Mplus!
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ỹit = Φi ỹit−1 + εit

εit ∼ MvN (0,Σ)

µi ,Φi ∼ MvN (γ,Ψ)



Bivariate multilevel autoregressive model

yit = µi + ỹit
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ỹit = Φi ỹit−1 + εit

εit ∼ MvN (0,Σ)

µi ,Φi ∼ MvN (γ,Ψ)

Inverse-Wishart prior for Ψ.

The regression parameters are
restricted in range for each
person.



Bivariate multilevel autoregressive model

yit = µi + ỹit

ỹit = Φi ỹit−1 + εit

εit ∼ MvN (0,Σ)

µi ,Φi ∼ MvN (γ,Ψ)

Inverse-Wishart prior for Ψ.

The regression parameters are
restricted in range for each
person.

Variances for the regression
parameters in Ψ will be small
(e.g., .005 to .05).



Why care about (not miss-specifying) priors for the
variances?

I The variances give use an impression of the range of
parameters in the population.

I Bias in the variances will result in biases in the individual
parameters.

I Severe bias in the variances will mess up estimates of the fixed
effects.
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Inverse-Wishart Prior Distribution

Scale and degrees of freedom

I S is used to position the IW distribution in parameter space

I df is used to set the certainty about the prior information in
the scale matrix; df >r−1



Inverse-Wishart Prior Distribution

Actually Not That Simple

IW mean:
S

df − r − 1
(1)

IW variances:
2s2kk

(df − r − 1)2(df − r − 3)
. (2)

Inverse-Wishart becomes more informative when:

I degrees of freedom increase

I values in the scale matrix become smaller



Inverse-Wishart Prior Distribution

Actually Not That Simple

IW mean:
S

df − r − 1
(1)

IW variances:
2s2kk

(df − r − 1)2(df − r − 3)
. (2)

Inverse-Wishart becomes more informative when:

I degrees of freedom increase

I values in the scale matrix become smaller



Difficult to balance S and df when variances are small

df=2, s =1 

df=3, s =1

0.0 0.1 0.2
 

 



Difficult to balance S and df when variances are small

df=2, s =.1 

df=4, s = .1

0.000 0.025 0.050 0.075
 

 

df=2, s =.01 

df=4, s = .01

0.00 0.01 0.02 0.03 0.04 0.05
 

 

df=2, s =.001 

df=6, s = .001

0.00 0.01 0.02 0.03 0.04 0.05
 

 



Options that work relatively well

I Avoid specifying (Inverse) Gamma or Wishart distributions -
use uniform instead (Mplus-friendly).
* For univariate and bivariate covariance matrices.

I Use a data-based prior (Mplus-friendly).
* Little bias, but we use the data twice: too small credible
intervals. (cf. Schuurman et al., in press)

I Use training data (Mplus-friendly).
* Requires a certain amount of data.

I Use an informative prior based on previous studies.
(Mplus-friendly)
* May be difficult to obtain appropriate data.
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Other options to try that may work

I Use improper priors. Default in Mplus (IW with negative df,
Scale = 0).
* Prior difficult to interpret. Still ensures positive definite
matrix?

I Transform the covariance matrix, put prior on transformed
matrix. (Mplus friendly..?)
* Convergence can be wonky, inconsistent results.

I Put Gamma priors on the diagonal elements in the IW-scale
matrix. (Mplus friendly..?; cf. Huang & Wand, 2013)

I Decompose the covariance matrix, specify priors on its parts..
(Mplus friendly..?; cf. Barnard, McCulloch & Meng)
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So you want to specify an IW-prior...

I Collect lots of data.

I Do not automatically trust defaults.

I Try a couple of different priors and compare the results.
(do a sensitivity analysis)

I Priors that are convenient to include for your sensitivity
analysis: uniform priors on the variances. A data-based prior.
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