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Networks in psychology
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Why do symptoms tend to co-vary?

• Symptoms directly (causally) influence each other
• Focus on symptom level
• Depression is its symptoms1

1Figure of [Cramer et al., 2012]
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How to infer a network in psychology?

Emotion or symptom networks differ from social networks
• Edges are not given

Co-author network 
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An example with 3 variables
VAR model

Happyt = β10 + ββ11Happyt−1 + ββ12Sadt−1 + ββ13Angert−1 + e1,t

Sadt = β20 + ββ21Happyt−1 + ββ12Sadt−1 + ββ23Angert−1 + e2,t

Angert = β30 + ββ31Happyt−1 + ββ32Sadt−1 + ββ33Angert−1 + e3,t

Anger

SadHappy

subject 1

Anger

SadHappy

subject 2
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Networks inferred by multilevel-VAR
Multilevel-VAR model

Happyi,t = β10 + b10i + ( ββ11 + b11i)Happyi,t−1+
( ββ12 + b12i)Angeri,t−1+

( ββ13 + b13i)Sadi,t−1+
e1i,t

Anger

SadHappy

Individual differences

Anger

SadHappy

Average
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Estimation limitations until now

• Multilevel VAR is not yet well implemented in open source
software

• A frequentist multilevel VAR model can only be estimated by
sequentially estimating univariate model

• Estimate all incoming edges per node
• Does not estimate all parameter covariances

• Not all parameters together in the same model

• You have to center the lagged predictor in order to get the
mean instead of the intercept

• Unequal distance/missingess is problematic
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The data

Analyzing ESM data [Geschwind et al., 2011]

• Subjects having residual depressive symptoms
• Mindfulness therapy/control group

• Per study period
• 6 days
• 10 beeps per day

• 4 items: Happy Relaxed Sad Worry
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Mplus code: comparing networks
Pre Post -> zeros and ones

Lets focus on the between level:
Happyprei = γ00 + γ01Group + eit
Happyposti = γ10 + 1 ∗ Happyprei + γ11Group + eit
Happyposti − Happyprei = γ10 + γ11Group + eit
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Mplus code
Pre Post -> zeros and ones
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Results I
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Results II
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Results III
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Results IV
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In line with previous research
[Bringmann et al., 2013] [Snippe et al., 2017]
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Challenges
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Challenges II

• Robustness
• Multiple testing
• Time variable
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Thank you!
L.F.Bringmann@rug.nl
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