

The dynamics of emotion regulation in daily life

Peter Koval University of Melbourne

Jordan Hinton, Freya Hanly, Keana Loschiavo, John Gleeson

Australian Catholic University

Peter Kuppens

KU Leuven, Belgium

Tom Hollenstein

Queen's University, Canada

Emotion regulation (ER)

ER: Processes that influence how emotions unfold over time

Traditional approach

Please indicate what you generally think or do when trying to regulate / manage your emotions / respond to unpleasant events / ...

Not at all *Moderately* Very Much I control my emotions by changing the way I think about the situation I'm in. I keep my emotions to myself. I continually think how horrible the situation has been I think "Why do I always react this way?" I think "Why can't I handle things better?"

Traditional approach

"reappraise" condition

"suppress" condition

"just view" condition

Traditional view of ER

ER str

Healthy and Unhealthy Emotion Regulation: Personality Processes, Individual Differences, and Life Span Development Oliver P. John

University of California, Berkeley

James J. Gross

Stanford University

ABSTRACT Individuals regulate their emotions in a wide variety of ways. Are some forms of emotion regulation healthier than others? We focus on two commonly used emotion regulation strategies: *reappraisal* (changing the way one thinks about a potentially emotion-eliciting event) and *suppression* (changing the way one responds behaviorally to an emotion-eliciting event). In the first section, we review experimental findings showing that reappraisal has a healthier profile of short-term affective,

(Gross & John, 2003; John & Gross, 2004)

preting

(Gross, 2007)

ER Flexibility

optimal functioning requires flexibility

(Kashdan & Rottenberg, 2010; Hollenstein, 2013)

→ Contextualized/transactional approach to ER:

 \rightarrow Healthy ER is not merely about using the "right" strategies

→Flexible deployment of ER strategies following contextual demands

Bonnano & Burton (2013); Aldao et al. (2015) Gross (2015); Koole (2009); Troy et al. (2013)

Psychological Science

Home Browse Submit Paper Subscribe About Search: keywords, title, authors The Wisdom to Know the Difference Strategy-Situation Fit in Emotion Regulation in Daily Life Is Associated With Well-Being Vol 27, Issue 12, 2016 Simon J. Haines, John Gleeson, Peter Kuppens, Tom Hollenstein, Joseph Ciarrochi, Izelle Show less ~ Labuschagne, Caitlin Grace, Peter Koval **Table of Contents** First Published October 13, 2016 Research Article Download PDF Ľ, Article information ~ Altmetric 174 Full text + Abstract Supplemental material The ability to regulate emotions is central to well-being, but healthy emotion regulation may not **Figures & Tables** merely be about using the "right" strategies. According to the strategy-situation-fit hypothesis, Article Metrics emotion-regulation strategies are conducive to well-being only when used in appropriate contexts. This study is the first to test the strategy-situation-fit hypothesis using ecological momentary **Related Articles** Ô assessment of cognitive reappraisal-a putatively adaptive strategy. We expect cople who used reappraisal more in uncontrollable situations and less in controllable situat e/ greater well-being than people with the opposite pattern of reappraisal use. Heal (n = 74) completed measures of well-being in the lab and used a smartphone app Cite Permissions Share

> Healthy emotion regulation is not just about using the "right" strategies, it also involves matching ER strategies to the context in which they're used.

PSYCHOLOGICAL SCIENCE

Q

ER Goals

Tamir (2009)

FEEL Project (Study I)

SEMA 2

(...... **SEMA** 21 days x 9 surveys/day T ~ 200 X N = 179 = 35,800 surveys ~17% missing data = 29,500 surveys

FEEL Project (Study I)

Age Range Mean SD	18 – 69 27.17 9.22	Political views 0=progressive <-> 100=co Mean SD	nservative 33.16 22.49
Gender		Relationship status	
Male	35%	in a relationship	45%
Female	65%	Single	55%
Other	<1%		
		Employment status	
Highest Education		Full-Time	15.1%
Secondary school	35.5%	Part-Time	10.2%
Trade / Apprenticeship	14.0%	Casual	11.8%
Bachelor's degree	37.6%	Student	45.7%
Master's degree	11.8%	Unemployed	11.9%
Doctoral degree	1.1%	Other	7%

FEEL Project (Study I) – ER strategies

FEEL Project (Study I) – Affect & ER Goals

Negative Affect

- Sad
- Angry
- Stressed

Positive Affect

- Нарру
- Relaxed
- Confident

NA Goal = MEAN (SAD_G, Angry_G, Stressed_G) per occasion

- \rightarrow 0 = maintain current NA
- \rightarrow Positive score = increase NA (contra-hedonic)
- → Negative score = decrease NA (pro-hedonic)

FEEL Project (Study I) – appraisals / context

What is the emotional impact of using a particular ER strategy?

e.g., *does reappraisal decrease NA*? (Controlling for previous NA)

But...ER use reported "since last survey"

What is the emotional impact of using a particular ER strategy e.g., *does reappraisal predict lower NA*? (Controlling for previous NA)

Should this be estimated as "contemporaneous effect"?

Goal_t

ER Flexibility?

To what extent is the use of ER strategies contingent on the context?

e.g., do people tend to use reappraisal more in <u>unc</u>ontrollable contexts OR

when experiencing high levels of NA? (controlling for previous ER use)

Similarly, to what extent are people's ER Goals contingent on the context? e.g., do people want to down-regulate NA more in <u>uncontrollable contexts?</u> OR

when experiencing high levels of NA? (controlling for previous ER Goals)

Double-lag problem again

s = EMA survey
t = conceptual time

All cross-lagged effects

Autoregressive effects

*** ERROR in MODEL command

Be

Models with random slopes for dependent variables with missing values cannot be estimated with the BAYES estimator unless the variable is defined as WITHIN.

One or more observations has missing values for a dependent variable on the right-hand side of an ON statement in a random slope definition.

Between-person differences in within-person dynamics

Mplus input (within)

ANALYSIS:

TYPE = TWOLEVEL RANDOM; ESTIMATOR=BAYES; FBITERATIONS=2000; PROCESSORS=2; MODEL: %WITHIN% !>>>Cross-Lagged Paths<<<!</pre> CL1 | ER ON Affect&1; CL2 CTX ON Affect&1; CL3 GOAL ON Affect&1; CL4 Affect ON ER&1; CL5 CTX ON ER&1; CL6 GOAL ON ER&1; CL7 | Affect ON CTX&1; CL8 ER ON CTX&1; CL9 GOAL ON CTX&1; CL10 Affect ON GOAL&1; CL11 ER ON GOAL&1; CL12 CTX ON GOAL&1; !>>>contemporaneous covariances<<<!</pre> ER Affect GOAL CTX with ER Affect GOAL CTX; !>>>Auto-Regressive Paths<<<!</pre> AR1 Affect ON Affect&1; AR2 | ER ON ER&1; AR3 CTX ON CTX&1; AR4 GOAL ON GOAL&1;

Mplus input (between)

%BETWEEN%

!>>>covariances between random effects<<<! ER Affect CTX GOAL CL1-CL12 AR1-AR4 WITH ER Affect CTX GOAL CL1-CL12 AR1-AR4;

!>>>Maladjustment predicting random effects<<<! ER Affect CTX GOAL CL1-CL12 AR1-AR4 ON MALADJ;

OUTPUT: TECH1 STANDARDIZED(CLUSTER) CINTERVAL(hpd) TECH8;

THE MODEL ESTIMATION TERMINATED NORMALLY

USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.

MODEL FIT INFORMATION

Number of Free Parameters

260

Information Criteria

Deviance	(DIC)				918513.067
Estimated	Number	of	Parameters	(pD)	26737.453

Mplus output – average within-person effects

STANDARDIZED MODEL RESULTS STDYX Standardization

bibin beanaarara	acton				
		Posterior	One-Tailed	95%	C.I.
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
Significance					

Within-Level Standardized Estimates Averaged Over Clusters

CL1 ER ON	Higher NA predicts g	reater use of re	eappraisal			
AFFECT&1	0.040	0.008	0.000	0.025	0.056	*
CL8 ER ON						
CTX&1	0.004	0.007	0.331	-0.011	0.017	
CL3 GOAL ON	Higher NA predict	ts greater dowi	n-regulation go	bals		
AFFECT&1	-0.068	0.008	0.000	-0.083	-0.053	*
CL9 GOAL ON	Higher Controllab	ility predicts lo	wer down-regi	ulation goals		
CTX&1	0.016	0.008	0.021	0.001	0.033	*
CL4 AFFECT ON	Reappraisal prediction	cts increases in	NA – <i>IS THAT</i>	REALLY POSSIB	LE?	
ER&1	0.020	0.007	0.002	0.007	0.033	*
AR1 AFFECT ON	1					
AFFECT&1	0.311	0.008	0.000	0.298	0.327	*
AR2 ER ON						
ER&1	0.200	0.007	0.000	0.186	0.215	*
AR3 CTX ON						
CTX&1	0.194	0.007	0.000	0.180	0.209	*
AR4 GOAL ON						
GOAL&1	0.224	0.008	0.000	0.207	0.239	*

Negative contemporaneous effect of REAP \rightarrow NA

Reappraisal \rightarrow **NA** (within and between)

Outcome = NA	Estimates are standardized				BET	WEEN		
		ER(t)	> NA(t)			ER -	-> NA	
	Est.	SD	95%	CI	Est.	SD	95%	CI
ER strategy			LL	UL			LL U	JL
REAPPRAISAL	-0.	030 0.008	-0.045	-0.014	-0.01	3 0.172	2 -0.393	0.286

Here, reappraisal predicts DECREASES in NA → double-lag may be the issue here

		Posterior	One-Tailed	95% C	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within-Level Sta	andardized Estim	ates Avera	ged Over Clus	sters		
S1 AFFECT ON ERX	-0.030	0.008	0.000	-0.045	-0.014	*
CL2 AFFECT ON ERX_1	N 0.006	0.006	0.176	-0.006	0.019	

ANALYSIS:

TYPE = TWOLEVEL RANDOM;

!ESTIMATOR=MLR;

ESTIMATOR=BAYES;

FBITERATIONS=10000;

PROCESSORS=2;

MODEL:

WITHIN

S1|Affect ON ERx;

CL1|ERx ON Affect 1;

CL2|Affect ON ERx 1;

AR1|Affect ON Affect 1;

AR2 | ERx ON ERx 1;

TIMES1 | Affect ON TIME;

TIMES2 | ERx ON TIME;

%BETWEEN%

Affect ON ERxMEAN; !between-effect Affect ON S1 CL1 CL2 AR1 AR2 TIMES1 TIMES2; S1 CL1 CL2 AR1 AR2 TIMES1 TIMES2 ON ERxMEAN; S1 CL1 CL2 AR1 AR2 TIMES1 TIMES2 with S1 CL1 CL2 AR1 AR2 TIMES1 TIMES2;

OUTPUT:

STANDARDIZED CINTERVAL (hpd) TECH8;

Mplus output – between-person effects

Between Level

ER MALADJ	ON	0.023	0.054	0.333	-0.080	0.127		
AFFECT MALADJ	ON	0.291	0.051	0.000	0.185	0.390	*	
CTX MALADJ	ON	-0.192	0.053	0.000	-0.289	-0.087	*	
GOAL MALADJ	ON	-0.136	0.051	0.004	-0.238	-0.042	*	
CL1 MALADJ	Maladjustment is associated with: - Higher mean NA - Lower mean controllability - Increased down-regulation goals for NA - But not with lower mean use of reappraisal! L1 ON MALADJ -0.138 0.065 0.017 -0.275 -0.01							
		Maladjustment is asso slope. <i>i.e., less context-conti</i>	ciated with a v ngent ER!	weaker Affect	→ER cross-lagge	d		

Conclusions

- → Flexible (context-contingent) use of reappraisal may be related to lower maladjustment / greater well-being
- → Just using "good" ER strategies (e.g., reappraisal) more (across contexts) is not related to greater well-being, contrary to many previous studies.

 \rightarrow On average, higher NA predicts greater use of reappraisal at the next occasion, BUT, reappraisal does not predict decreased NA at the next occasion (only when measured at same occasion!)

- → People's ER goals also vary across contexts e.g., in more controllable contexts people are less motivated to down-regulate NA.
- \rightarrow I've only just scratched the surface...lots more work to do!